
1

Optimal Linear Control on the SO(2) Manifold Using Lie Algebras
and Auto-Differentiation

Andrew Torgesen1

Abstract—
Many interesting problems in robotics and control entail

dealing with extensive usage of rigid body transformations in the
formulation of the dynamics of systems and their corresponding
controllers. Expressing these transformations adequately can
pose a challenge. In particular, rotational transforms cannot
be described globally in the language of vector spaces. Thus,
control formulations dealing with rotational transforms often
have to resort to programmatic “hacks” such as angle wrapping
and quaternion normalization to maintain a feasible control
strategy. Additionally, deriving the equations of motion of
complex systems with rigid body transformations for control
often proves to be a cumbersome process. This project briefly
reviews the mathematical foundations and applications of Lie
Algebras and auto-differentiation to control theory. Lie Algebras
are becoming increasingly popular, particularly in applications
leveraging computer vision. Auto-differentiation has proved to
be a useful and efficient alternative to calculating analytical
derivatives for control. These technologies are applied to the
formulation and simulation of a linear quadratic regulation
(LQR) control strategy on the SO(2) manifold.

I. INTRODUCTION

The fields of robotics and autonomy are characterized by
their extensive use of control, perception, and estimation
algorithms for systems with many degrees of freedom and
coordinate frames. For example, a miniature unmanned air
vehicle (UAV) platform usually has at least six degrees of
freedom during flight. A UAV is commonly outfitted with an
inertial measurement unit (IMU) that is giving measurements
in the body-fixed frame, a camera giving measurements in
the camera-centric frame, a GPS unit giving measurements
in an inertial frame, etc. Moreover, the dynamic equations
of motion of the UAV are often derived and expressed in
successive frames characterized by Euler angles. For these
reasons, a successful implementation of control, perception,
and estimation strategies must be able to take into account
all of the different rigid body transformations between these
frames in a mathematically sound and robust way.

Expressing these rigid body transformations adequately can
pose a challenge. In particular, rotational transforms cannot
be expressed as members of a vector space. Instead, they
are classified as members of a manifold. For example, three-
dimensional rotational transforms are all members of the
group of all 3-by-3 orthogonal matrices with a determinant
of one, known as SO(3). Similarly, all two-dimensional ro-
tational transforms are characterized by the group of all 2-
by-2 orthogonal matrices with a determinant of one, known
as SO(2). Because rotational transforms in two and three-
dimensional space cannot be expressed as members of a vector

1Completed as a project for CS 513 andrew.torgesen@gmail.com

space, the derivation of control and estimation strategies must
often rely on programmatic “hacks” such as angle wrapping
and quaternion normalization to keep the mathematics intact
and the algorithms stable. As shown in [1], complicated
mathematical tools known as coning and sculling integrals
have historically been used to deal with this same rotational
transform problem.

An additional challenge that arises in robotics problems
of this nature is the task of deriving analytic derivatives.
As the number of degrees of freedom and distinct frames
increases, the complexity of the derivatives of the dynamic
and measurement models also increases. Derivative complexity
can also be a function of the chosen method for representing
rotations, such as quaternions versus Euler angles. The pro-
cess of deriving cumbersome derivatives for linearization and
algorithm implementation often bogs down the development
process, distracting from the overarching goal of creating
effective and robust algorithms.

This paper provides a tutorial on select methods for dealing
with the aforementioned challenges in the context of optimal
linear control. Specifically, an optimal linear controller is
derived on the SO(2) manifold using Lie Algebras for a
simple point mass system constrained to a circle, and auto-
differentiation is used to avoid analytically taking derivatives
of the nonlinear dynamics. Section II-A gives a brief overview
of Lie theory and its application to robotics, and II-B applies
the theory to the dynamics of a point mass on the SO(2)
manifold, formulated for optimal control. Section III explains
the mechanics and use of auto-differentiation, and Section IV
gives the background of the optimal linear controller that will
be used in the tutorial. Finally, in Section V, the controller
is simulated and results are discussed. The tools and methods
discussed in this tutorial are equally applicable to problems of
higher dimensionality and complexity.

II. LIE ALGEBRAS AND DYNAMICS IN SO(2)

A. Lie Groups and Lie Algebras: Background

As explained in [2], it should be noted that Lie theory
is an extremely vast field of mathematics with applications
well beyond the scope of this paper. This section will give
the minimum required background of Lie theory to create an
optimal linear controller in SO(2). The material in this section
is adapted from [2], [3], [4], and [5].

In robotics and general engineering applications, the prop-
erty of linearity is an extremely important one. The mathe-
matics for proving stability, controllability, observability, and
robustness are well-defined, as are a myriad of algorithms for
implementing controllers, observers, etc. when the dynamics

2

of the system in question are linear. In practice, however,
dynamics of a system are almost certainly never truly linear.
Thus, part of the goal of an engineer is often to find a (linear, if
possible) system representation that represents the real system
well enough to achieve satisfactory performance. If a linear
model is not enough to achieve satisfactory performance over
the entire configuration space of a system, then it is very
common practice to repeatedly linearize a nonlinear model as
a system’s state evolves. Figure 1 depicts a common version
of this process, in which a nonlinear model is re-linearized
at each time step k for each new equilibrium point, xeq,k to
allow for the use of algorithms which assume linear dynamics:

Fig. 1: Representation of repeated linearization about equilib-
rium point xeq,k for the application of specialized algorithms.

One key feature to observe from Figure 1 is the fact that
the model state x, the linearization, and the algorithms all
operate on and in the space Rn, which is a vector space. Vector
spaces possess special properties, such as the ability to be
represented uniquely as vectors using a linear combination of
basis vectors, as well as the commutative property. The special
properties of vector spaces make them desirable to work with
mathematically.

Rotations are not members of vector spaces. In other words,
they cannot be represented as vectors; they cannot be uniquely
expressed as linear combinations of basis vectors and they
don’t commute. To get around the fact that rotations cannot
be represented as vectors, they are usually given parameteri-
zations such as Euler angles (roll, pitch, yaw) or quaternions,
“stuffed” into a vector, and the pseudo-vector is updated at
each time step by algorithms designed to compensate for the
resulting irregular properties of the pseudo-vector. In practice,
this often works adequately when time steps are very small, but
also requires programmatic “hacks” such as angle wrapping
and repeated quaternion normalization. Using classical vector
calculus methods, rotations and other entities describable not
as members of vector spaces but of manifolds cannot be
analyzed in a mathematically sound manner.

Lie groups and Lie algebras provide the mathematical tools
necessary to amend these issues. Lie groups are characterized
as smooth, differentiable manifolds. Smooth, differential man-
ifolds have the special property that locally they behave like
vector spaces. Lie algebras exploit this property. A Lie algebra
is defined as the tangent space of a corresponding Lie group
at the identity. Figure 2 visualizes this concept:

Fig. 2: Representation of the relationship between a Lie group
SO(2) and its Lie algebra so(2). Figure adapted from [2].

In the figure, SO(2) is the Lie group, and so(2) is its
corresponding Lie algebra. While SO(2) is a manifold, so(2)
is a vector space. so(2) is derived by computing the tangent
space of SO(2) at the identity element of SO(2), which is the
2-by-2 identity matrix, I2×2. It is important to note that the Lie
algebra does not have to be calculated at the identity element
of the Lie group, though it is convenient to do so because every
Lie group is required to have an identity element. Lie groups
are any set of mathematical elements (whether they’re matrices
or something else) characterized by the following properties:
• The set is closed under all composition mapping operations.
• Its group operations are associative.
• The set has a unique identity element.
• Every element in the set has a unique inverse.
• The elements of the set form a differentiable manifold
(meaning that we can do calculus with the elements).
• All group composition mappings are smooth and differen-
tiable.
• The inversion mapping is differentiable.

Given a Lie group, its corresponding Lie algebra can be
found using what is called a logarithmic mapping. Once the
Lie algebra has been found, all of the math can be done with
the algebra since it constitutes a vector space. That being
said, although members of a Lie algebra constitute a vector
space (and can thus be added, subtracted, and transformed
by derivative operators), these vector spaces usually do not
correspond to the Cartesian vector space Rn, so they cannot
be immediately manipulated using matrix operators. Thus,
linear invertible maps (or isomorphisms) called the hat and vee
operators are used to transform between the two vector spaces.
The hat operator (·)∧ maps elements of Rn to elements of the
vector space of the Lie algebra, and the vee operator (·)∨ maps
Lie algebra elements to vectors in Rn. Every element of a Lie
group has a corresponding element in its Lie algebra. Thus,
once the needed mathematical analysis has been performed
with the algebra, the algebra can be transformed back into
its corresponding Lie group element using what is called the
exponential mapping.

Applications of the above can be found in Section II-B,
which uses the mathematics of Lie theory to derive impor-
tant dynamic relationships for a particle confined to a circle
(describable in SO(2)) in a mathematically sound way.

B. Dynamic Relations for Optimal Control in SO(2)

We will now apply the mathematics of Lie Algebras to
the dynamics of a particle confined to a unit circle in two-
dimensional space, referred to as R2. In R2, rotations are

3

described by the set of all orthogonal 2-by-2 matrices with a
determinant of 1, or the group SO(2). The formal mathemati-
cal operations utilized in this section for transforming between
Lie group elements and Lie algebra elements are defined in
[2], [6], and [7].

The following are the definitions of the fundamental mathe-
matical operations relevant to manifolds as applied to a scalar
quantity p ∈ R1, a manifold object Φ ∈ SO(2), and a Lie
algebra object φ ∈ so(2). This section will make extensive
usage of these definitions:

The hat operator, (·)∧ : R1 → so(2):

p∧ =

[
0 −p
p 0

]
= φ. (1)

The vee operator, (·)∨ : so(2)→ R1:

φ∨ = φ(1, 0) = p, (2)

where φ(i, j) denotes the ith row, jth column entry of the
matrix φ.

The exponential mapping, exp(·) : so(2)→ SO(2):

exp(φ) =

[
cos(φ∨) − sin(φ∨)
sin(φ∨) cos(φ∨)

]
= Φ. (3)

The logarithmic mapping, log(·) : SO(2)→ so(2):

log(Φ) =

[
0 − arctan(Φ(1,0)

Φ(0,0))

arctan(Φ(1,0)
Φ(0,0)) 0

]
= φ. (4)

With these definitions in place, we move to modeling
a simple SO(2)-defined system for optimal control. When
modeling a system for optimal control, it is customary to
modify the state x and input u by subtracting off a desired,
or reference, trajectory xref , uref that maintains the system
in equilibrium:

x̃ = x− xref ũ = u− uref (5)

Imagine a particle confined to a unit circle. Its state x at any
given point in time can be described by an angle on the circle,
θ, and angular velocity, ω. However, expressing the angle on
the circle with a single value will require finite limits (i.e.
−π → π), leading to the need for angle wrapping throughout
the control scheme, as well as other issues. Thus, in this work
we express the state instead as the following:

x =
[
Φ ω

]T
u = Γ (6)

where Φ ∈ SO(2) is used to describe the position on the
circle instead of θ. Γ is the applied torque on the particle.
Because Φ is not a member of a vector space, we cannot sim-
ply perform the subtraction operation in Equation 5. Instead,
we must define the box-minus operator �, which subtracts
normal vector components in Rn, but does something different
for Lie group elements. The box-minus operator takes two Lie
group elements and sends them to a Lie algebra element which

represents their difference using the logarithmic mapping first,
then uses the vee operator to turn that element into a vector
in Rn. Thus, we define the difference between x and xref as

x̃ = x� xref =

[
log(ΦΦ−1

ref)∨

ω − ωref

]
, (7)

where ΦΦ−1
ref gives a representation of the difference be-

tween the current and reference angular states.
The box-minus operator, as well as the exponential mapping

and hat operator, will allow for the calculation of the time
derivative of Φ ∈ SO(2). Keeping in mind that Φ is a 2 × 2
rotation matrix from a fixed frame I to a rotating frame F(t),
the definition of the derivative is

Φ̇ = lim
∆t→0

1

∆t
(Φt+∆t � Φt) = lim

∆t→0

1

∆t
log(Φt+∆tΦ

−1
t)

= lim
∆t→0

1

∆t
log(Φ

F(t+∆t)
I ΦIF(t))

= lim
∆t→0

1

∆t
log(Φ

F(t+∆t)
F(t) Φ

F(t)
I ΦIF(t))

= lim
∆t→0

1

∆t
log(exp(δ

F(t+∆t)
F(t))Φ

F(t)
I ΦIF(t))

= lim
∆t→0

1

∆t
log(exp(δ

F(t+∆t)
F(t))) = lim

∆t→0

1

∆t
δ
F(t+∆t)
F(t)

=
dδ

dt
=

d

dt

[
0 −θ
θ 0

]
=

[
0 −ω
ω 0

]
∈ so(2). (8)

There is something very important to note here about
Equation 8. The attentive reader may notice that the above
result does not quite correspond to the standard definition of
the time derivative of a rotation matrix given in [8] as

Φ̇ =

[
0 −ω
ω 0

]
Φ ∈ SO(2). (9)

The discrepancy between Equations 8 and 9 gets back to the
definition of a Lie algebra as given in Section II-A: the tangent
space of a Lie group evaluated at the identity. This is apparent
when we see that we arrive at Equation 8 by substituting the
identity SO(2) element, I2×2, for Φ in Equation 9. It may be
inferred, then, that a special form of the time derivative of a
Lie group element (special in that it returns a member of the
Lie algebra, which is a member of a vector space) is obtained
by using the box-minus operator in the standard definition of
a time derivative.

Finally, we apply the vee operator to transform our deriva-
tive result in Equation 8 from so(2) to R1:

(Φ̇)∨ = ω ∈ R1. (10)

We now move forward with Equation 10 as our operating
definition of the time derivative of Φ, as it encodes the same
information about the time evolution of Φ as Equation 9 and
also has the advantage of being encoded as a member of R1.
Indeed, ω can be transformed back into a member of SO(2)
at any point using the exponential mapping.

4

Given Equations 6 and 10, the dynamics of the system ẋ
are

ẋ =

[
Φ̇
ω̇

]
=

[
ω

− b
Jω + 1

J Γ

]
(11)

where the ω̇ equation comes from the application of New-
ton’s second law to a rotating system with angular velocity
damping:

Jω̇ + bω = Γ (12)

with particle moment of inertia about the center of the unit
circle J and damping coefficient b.

From Equation 11, we can use Euler integration to simulate
the system in discrete time on a computer:

x(t+ ∆t) =

[
Φ(t+ ∆t)
ω(t+ ∆t)

]
= x(t) � ẋ(t)∆t (13)

where, as with the box-minus operator, the “box-plus”
operator � is a generalized addition operator that adds vector
components, but takes Lie algebra objects and sends them
to the manifold using the exponential mapping. Applying the
definition of the box-plus operator to Equation 13 gives

[
Φ(t+ ∆t)
ω(t+ ∆t)

]
=

[
exp(ω(t)∆t)Φ(t)

ω(t) + (1
J Γ− b

Jω(t))∆t

]
. (14)

These notions of generalized subtraction, addition, differ-
entiation, and simulation provide the mathematical basis for
a specialized optimal controller that operates on the SO(2)
manifold.

III. AUTO-DIFFERENTIATION

Auto-differentiation, or algorithmic differentiation, is a soft-
ware tool for automatically calculating derivatives numerically
in code. The tool achieves this by exploiting the fact that a
derivative is a linear operator, which means that the derivative
of a sequence of elementary operations (such as addition, sub-
traction, multiplication, etc.) is equal to the derivatives of each
elementary operation in sequence, joined by the chain rule.
Because every mathematical relationship in general robotics
applications can be decomposed into elementary operations,
auto-differentiation is an effective means for not dealing with
the derivation of analytic derivatives.

A common method of applying the chain rule in auto-
differentiation, known as the forward mode, is given in [9].
To understand the process, let us take an example function of
two variables:

f(x1, x2) = x1x2 + x2sin(x1) (15)

We will use the forward mode method of auto-
differentiation to evaluate the partial derivative of this function
with respect to x1 (denoted ∂f/∂x1) at x1 = 0.5, x2 = 1.5.
Equation 15 can be represented as a computational graph

with edges wn representing intermediate computed values, as
shown below:

Fig. 3: Computational graph for the equation f(x1, x2) =
x1x2 + x2sin(x1).

At x1 = 0.5, x2 = 1.5, the intermediate signal values wi

take on the following values:

wi Value
w1 0.5
w2 1.5
w3 = w1 ∗ w2 0.75
w4 = sin(w1) 0.4794
w5 = w2 ∗ w4 0.7191
w6 = w5 + w3 1.4691

We now use these intermediate signal values to calculate
∂f/∂x1, which is equal to ∂w6/∂w1, derivable using the
derivatives of the elementary operations and the chain rule:

wi Chain Rule ∂wi/∂w1

w1
∂w1

∂w1
1

w2
∂w2

∂w1
0

w3
∂w3

∂w1
(∂w1

∂w1
) + ∂w3

∂w2
(∂w2

∂w1
) w2(1) + w1(0) = 1.5

w4
∂w4

∂w1
(∂w1

∂w1
) cos(w1)(1) = 0.8776

w5
∂w5

∂w2
(∂w2

∂w1
) + ∂w5

∂w4
(∂w4

∂w1
) w4(0) + w2(cos(w1)) = 1.3

w6
∂w6

∂w3
(∂w3

∂w1
) + ∂w6

∂w5
(∂w5

∂w1
) 1(1.5) + 1(1.3164) = 2.816

The algorithm gives an answer of 2.816, which matches the
analytic solution of ∂f/∂x1 = x2+x2cos(x1). As can be seen
from this example, only derivatives of elementary operations
and the chain rule are needed to compute derivatives of ar-
bitrarily complex functions. Unlike finite difference methods,
auto-differentiation techniques have no truncation error.

Different programming languages feature different li-
braries for providing automatic differentiation functionality. In
Python, the library autograd was developed as part of a Ph.D.
thesis, found in [10]. Autograd performs operator overloading
on elementary operations to implement the forward mode
algorithm. For an example of autograd usage, consider the
following Python code, which implements the previously given
example:

from autograd import grad
import autograd.numpy as np

def f(x1, x2):
return x1∗x1 + x2∗np.sin(x1)

dfdx1 = grad(f, 0)

slope = dfdx1(0.5, 1.5)

5

The line “import autograd.numpy as np” imports
the elementary operator overloading. The forward
mode auto-differentiation is implemented in the line
“dfdx1 = grad(f, 0).” The autograd function grad takes
the function definition f(x1,x2) and creates a new function
handle dfdx1, which is the partial derivative of f with
respect to the argument index 0 (zero-indexed), giving
∂f/∂x1. Because autograd creates a new function handle by
writing new code, the resulting auto-differentiation runs just
as fast as programming the analytic derivative as a function
by hand.

IV. LQR CONTROL

We are concerned with the optimal control scheme for
controlling a linear system. This is tantamount to finding an
optimal input u(t) to drive the state x(t) of a linear system
to some desired value while minimizing a linear objective
function, usually a function of state error and control effort.
As insightfully pointed out in [11], such a controller can be
thought of as the H2-optimal controller. Rudolf Emil Kalman
was the first individual to solve this problem, as described in
[12]. His derived regulation scheme came to be known as the
Linear Quadratic Regulator (LQR). While control problems
are concerned with driving the states of a system to some
commanded value, regulation problems are concerned with
driving the states of a system to zero. Put succinctly, LQR
over a finite time horizon is given in [13] as the control scheme
which minimizes the continuous-time cost function

C =
1

2

∫ ∞
0

(xTQx+ uTRu)dt (16)

where Q ≥ 0, R > 0 are positive semi-definite and positive
definite matrices, respectively, subject to the constraints

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rn, x0.

Compare Equation 16 with the general formulation for an
optimal control problem, as given in [14], which is to minimize
the continuous-time cost function

C =

∫ tf

t0

L(x(t), u(t), t)dt (17)

subject to the constraints

ẋ = f(x(t), u(t), t).

Comparing Equations 16 and 17, one may be convinced
that the difference between LQR and generic optimal control
is the linearity in the objective function and constraints of the
former. If LQR is to be used to regulate a nonlinear system,
then a linearized version of the system must be derived.

It is shown in [13] that the closed-form solution (or optimal
control u(t)) to Equation 16 is given by

u(t) = −Kx(t) (18)

where K is a m-by-n matrix of gains (m is the dimension
of u and n is the dimension of x) given by

K = R−1BTS (19)

and S is given by the solution to the algebraic Riccati
equation:

−SA+ATS + SBR−1BTS −Q = 0 (20)

Equation 20 can be solved efficiently using modern algo-
rithms, as discussed in [15]. In fact, the LQR design process
essentially automates the process of picking optimal full-state
feedback gains, given the Q and R weighting matrices in
Equation 16. Thus, the task of designing a LQR given the
linear (or linearized) time-invariant system ẋ = Ax + Bu
amounts to choosing Q and R. Q is a n-by-n, positive semi-
definite matrix whose values weight the relative cost of errors
in the control of x (x is synonymous with error since a
regulator tries to drive the state to zero). For example, setting
Q equal to the identity matrix equally weights error in each
state xi in the cost function. Likewise, R is a m-by-m positive
definite matrix whose values weight the relative cost of the
components of the control effort, or

∑
||ui||2. Thus, choosing

values for Q and R allows one to define the tradeoff between
full-state regulation accuracy and control effort.

V. SIMULATION AND RESULTS

With the tools of SO(2) manifold operators, auto-
differentiation, and LQR, we now derive and implement an
optimal controller for commanding a particle confined to a unit
circle to specified angles θc. The effectiveness of the controller
is demonstrated in simulation using Python.

A. Error State Dynamics and Controller Design

In accordance with the state formulation in Section II-B, we
define the error state between the position and velocity of a
particle on a unit circle x and its desired position and velocity
xd:

x̃ = x� xd (21)

Taking the time derivative of Equation 21 removes the
box-minus operator, since the time derivatives of the SO(2)
elements were shown in Section II-B to be members of R1:

˙̃x = ẋ− ẋd =

[
˙̃Φ
˙̃ω

]
=

[
ω − ωd

− b
Jω + 1

J Γ− (− b
Jωd + 1

J Γd)

]
(22)

=

[
ω − ωd

b
J (ωd − ω) + 1

J (Γ− Γd)

]
.

As discussed in Section IV, the LQR control scheme
requires a linear description of a system and its inputs in
the form of the matrices A and B, which are linearized with
respect to the states and inputs, respectively. Thus, in order

6

to derive A and B for our particle system, we must describe
Equation 22 as a function of the error state, x̃. We do this by
first applying the box-minus operator and exponential mapping
to obtain an expression relating the current state, the desired
state, and the error state:

[
Φ̃
ω̃

]
=

[
log(ΦdΦ−1)∨

ω − ωd

]
(23)

→
[
exp(Φ̃∧)

ω̃

]
=

[
ΦdΦ−1

ω − ωd

]
→
[
exp(Φ̃∧)Φ
ω − ω̃

]
=

[
Φd

ωd

]
.

Substituting the results of Equation 23 into Equation 22, we
obtain the error state dynamics in terms of only the error state:

[
˙̃Φ
˙̃ω

]
=

[
ω − (ω − ω̃)

b
J ((ω − ω̃)− ω) + 1

J (Γ− (Γ− Γ̃))

]
(24)

=

[
ω̃

− b
J ω̃ + 1

J Γ̃

]
= f(x, u).

For the simulation, we choose coefficient values of J = 1.0
and b = 0.1. Given Equation 24, the state space matrices A
and B are given as the Jacobians of the dynamics with respect
to the error state and error input:

A =
∂f(x, u)

∂x
. (25)

B =
∂f(x, u)

∂u
. (26)

Though Equations 25 and 26 are, in this case, very simple to
calculate analytically by hand, we will refrain from doing so in
order to demonstrate the effectiveness of auto-differentiation
in calculating Jacobians for control applications.

As explained in Section IV, an optimal input u (correspond-
ing to values for Γ through time) for driving the particle to
desired states xd is given by u = −Kx̃, where K is a gain
matrix automatically calculated as a function of A, B, and
cost matrices Q and R. For this simulation, we choose the
following values for the cost matrices:

Q =

[
10 0
0 1

]
R = 0.1 (27)

Interpreted in terms of a cost function, the chosen ma-
trices Q and R communicate that ten times as much im-
portance is given to removing error in Φ than removing
error in ω, and ten times as much importance is given to
removing error in ω than experiencing control effort in Γ.
In the simulation, the optimal K matrix with respect to
these design criteria is calculated using the Python function
scipy.linalg.solve continuous are to solve the alge-
braic Riccati equation for the matrix S, then applying Equation
19:

K = R−1BTS (28)

=
[
10 5.378

]
.

Given the optimal control gain matrix, we now simul-
taneously simulate and control the SO(2) particle system
according to Algorithm 1, which utilizes auto-differentiation,
the optimal gain matrix from LQR, and manifold operators:

Algorithm 1 SO(2) LQR Reference Tracker
Input: Q, R cost matrices, θd ∈ R1 reference angle command
Output: θ(t), ω(t), Γ(t)

1: Initialize A and B matrices by algorithmically differen-
tiating Equation 24

2: Initialize K (assume constant) using Equation 28
3: Initialize x: Φ(0) = I2×2 ∈ SO(2), ω(0) = 0
4: Initialize Γd = 0, ωd = 0
5: while t ≤ 5 do
6: Compute Control:
7: Φd = exp(θ∧d)

8: x̃ =

[
log(ΦΦ−1

d)∨

ω − ωd

]
9: Γ̃ = −Kx̃

10: Γ = Γ̃ + Γd

11: Propagate Dynamics for Simulation:

12:

[
Φ(t+ ∆t)
ω(t+ ∆t)

]
=

[
exp(ω(t)∆t)Φ(t)

ω(t) + (1
J Γ− b

Jω(t))∆t

]
13: Store State Values:
14: Store θ(t) = log(Φ)∨

15: Store ω(t) = ω
16: Store Γ(t) = Γ
17: end while

The following section gives results of a Python simulation
of Algorithm 1.

B. Results and Discussion

Figures 4 and 5 depict the results of two separate simu-
lations of algorithm 1 in Python. Figure 4 demonstrates the
ability of the controller to track reference commands in a
timely manner and with zero steady-state error. It is also appar-
ent from the figure that the LQR control scheme successfully
drives the error state to zero. Again, it is important that the
desired trajectory xd, ud correspond to equilibrium for the
system (in this case, θ = θd, ω = ωd = 0, Γ = Γd = 0).

While Figure 4 demonstrates the effectiveness of the con-
troller and the auto-differentiation engine, it does not nec-
essarily demonstrate the advantage of formulating the state
as x =

[
Φ ω

]T
as opposed to x =

[
θ ω

]T
, as would

normally be customary. Indeed, a properly formulated LQR
control scheme with respect to a θ-defined state would produce
the exact same plot, provided that the dynamics of the system
for simulation were formulated properly.

One important advantage of the manifold state representa-
tion is demonstrated in Figure 5, in which the commanded
angle jumps suddenly from just below θd = π, the upper
limit of the angle definition, to just above θd = −π, the

7

Fig. 4: Simulation of a particle confined to the unit circle,
guided to reference angles θc by an LQR control scheme. The
two commanded angles are −2π/5 and 2π/5.

Fig. 5: Simulation of a particle confined to the unit circle,
guided to reference angles θc by an LQR control scheme. The
two commanded angles are 4π/5 and −4π/5.

lower limit of the angle definition. The manifold controller
successfully recognizes that a counter-clockwise path consti-
tutes the shortest path from the first commanded angle to the
second commanded angle, despite the fact that the particle
must traverse beyond the domain of the angle definition. A
traditional controller would not behave this way; a traditional
controller would guide the particle the long way around to
maintain the system state within the arbitrarily defined limits
−π ≤ θ ≤ π. Such behavior could conceivably lead to
instability in the case of overshoot. Additional logic loops for
angle-wrapping and related computation would be required to
correct this undesirable behavior in a reliable way.

The ability of the SO(2) controller to ignore arbitrarily
defined angular limits points to one of the principle advantages
of computing on the manifold. Namely, computing on the
manifold allows one to leverage algorithms and mathematical

operations that require operands to be part of a vector space
while also accurately representing quantities that are not
adequately represented as vectors.

VI. CONCLUSION

While the scope of this tutorial was limited to a relatively
simple system in the two-dimensional plane, the applications
of its subject matter are wide-ranging and impactful. The
discussed tools are scalable to problems of much greater com-
plexity. LQR is famous for having been applied widely through
robotics applications with full-state feedback control, as well
as for its optimality when applied to linear systems. Similarly,
auto-differentiation boasts a wide array of applications, from
gradient-based optimization problems of many variables to
modeling applications with many state variables and complex
parameterizations. Lie group theory is becoming increasingly
popular in the world of robotics as the increasing scope of
control and estimation problems–particularly involving com-
puter vision–merit the use of a more sound mathematics for
differential geometry. This tutorial provides a primer on these
important tools with the hope that the reader may be inspired
to consider their applicability to additional challenging and
interesting computational problems.

REFERENCES

[1] K. Roscoe, “Equivalency between strapdown inertial navigation coning
and sculling integrals/algorithms,” Journal of Guidance Control and
Dynamics - J GUID CONTROL DYNAM, vol. 24, pp. 201–205, 03 2001.

[2] J. Solà, J. Deray, and D. Atchuthan, “A micro lie theory for state
estimation in robotics,” CoRR, vol. abs/1812.01537, 2018.

[3] J. M. Selig, Lie Groups and Lie Algebras in Robotics. South End
University.

[4] D. Saracino, Abstract Algebra: A First Course, Second Edition. Wave-
land Press, 2008.

[5] Q. Xu and D. Ma, “Applications of Lie groups and Lie algebra to
computer vision: A brief survey,” in 2012 International Conference on
Systems and Informatics (ICSAI2012), pp. 2024–2029, IEEE, may 2012.

[6] Z. Zhang, A. Sarlette, and Z. Ling, Integral Control on Lie Groups.
2015.

[7] S. Berkane and A. Tayebi, “Some optimization aspects on the lie group
so(3),” International Federation of Automatic Control, vol. 48, no. 3,
p. 11171121, 2015.

[8] S. Zhao, “Time derivative of rotation matrices: A tutorial,” CoRR,
vol. abs/1609.06088, 2016.

[9] U. Naumann, The Art of Differentiating Computer Programs, An Intro-
duction to Algorithmic Differentiation. 2012.

[10] D. Maclaurin, Modeling, Inference and Optimization with Composable
Differentiable Procedures. PhD thesis, 2016.

[11] L. Lublin, S. Grocott, and M. Athans, H2 (LQG) and H Control, pp. 18–
1. 12 2010.

[12] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME Journal of Basic Engineering,
vol. 82, no. 1, p. 3545, 1960.

[13] R. M. Murray, “Lqr control,” Lectures on Control and Dynamical
Systems at the California Institute of Technology.

[14] J. T. Betts, “Practical methods for optimal control using nonlinear
programming,” SIAM, 2001.

[15] P. Lancaster and L. Rodman, Algebraic Riccati equations. Oxford
University Press, 1995.

	Introduction
	Lie Algebras and Dynamics in SO(2)
	Lie Groups and Lie Algebras: Background
	Dynamic Relations for Optimal Control in SO(2)

	Auto-Differentiation
	LQR Control
	Simulation and Results
	Error State Dynamics and Controller Design
	Results and Discussion

	Conclusion
	References

